Subject-Specific Modeling of EEG-fNIRS Neurovascular Coupling by Task-Related Tensor Decomposition, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2024, 32: 452-461. https://doi.org/10.1109/TNSRE.2024.3355121.
An Adaptive Oscillator-Driven Gait Phase Model for Continuous Motion Estimation Across Speeds, IEEE Transactions on Instrumentation and Measurement, 2024, 73: 1-14. https://doi.org/10.1109/TIM.2024.3381303.
A dynamic brain network decomposition method discovers effective brain hemodynamic sub-networks for Parkinson's disease, Journal of Neural Engineering, 2024, 21(2): 026047. https://doi.org/10.1088/1741-2552/ad3eb6.
fNIRS-based graph frequency analysis to identify mild cognitive impairment in Parkinson's disease, Journal of Neuroscience Methods, 2024, 402: 110031. https://doi.org/10.1016/j.jneumeth.2023.110031.
A small-sample time-series signal augmentation and analysis method for quantitative assessment of bradykinesia in Parkinson's disease, Intelligence & Robotics, 2024, 4(1): 74-86. https://doi.org/10.20517/ir.2024.05.
An fNIRS-Based Dynamic Functional Connectivity Analysis Method to Signify Functional Neurodegeneration of Parkinson's Disease, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 1199-1207. https://doi.org/10.1109/TNSRE.2023.3242263.
An EEG-fNIRS neurovascular coupling analysis method to investigate cognitive-motor interference, Computers in Biology and Medicine, 2023, 160: 106968. https://doi.org/10.1016/j.compbiomed.2023.106968.
Single-Channel sEMG-Based Estimation of Knee Joint Angle Using a Decomposition Algorithm With a State-Space Model, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 4703-4712. https://doi.org/10.1109/TNSRE.2023.3336317.
Video-Based Quantification of Gait Impairments in Parkinson's Disease Using Skeleton-Silhouette Fusion Convolution Network, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 2912-2922. https://doi.org/10.1109/TNSRE.2023.3291359.
Increased Effective Connectivity of the Left Parietal Lobe During Walking Tasks in Parkinson's Disease, Journal of Parkinson's Disease, 2023, 13(2): 165-178. https://doi.org/10.3233/JPD-223564.
Fronto-parietal cortex activation during walking in patients with Parkinson's disease adopting different postural strategies, Frontiers in Neurology, 2022, 13: 998243. https://doi.org/10.3389/fneur.2022.998243.
Robust motion estimation with user-independent sEMG features extracted by correlated components analysis, Measurement and Control, 2022: 00202940221105092.
Plantar pressure-based temporal analysis of gait disturbance in idiopathic normal pressure hydrocephalus: Indications from a pilot longitudinal study, Computer Methods and Programs in Biomedicine, 2022, 217: 106691. https://doi.org/10.1016/j.cmpb.2022.106691.
Quantitative assessment of gait characteristics in patients with Parkinson's disease using 2D video, Parkinsonism & Related Disorders, 2022, 101: 49-56. https://doi.org/10.1016/j.parkreldis.2022.06.012.
fNIRS-based brain state transition features to signify functional degeneration after Parkinson's disease, Journal of Neural Engineering, 2022, 19(4): 046038. https://doi.org/10.1088/1741-2552/ac861e.
A Functional Region Decomposition Method to Enhance fNIRS Classification of Mental States, IEEE Journal of Biomedical and Health Informatics, 2022, 26(11): 5674-5683. https://doi.org/10.1109/JBHI.2022.3201111.
帕金森病患者上肢运动迟缓数字化测评, 中国现代神经疾病杂志, 2020, 20(8): 721-726.
Brain Temporal-Spectral Functional Variability Reveals Neural Improvements of DBS Treatment for Disorders of Consciousness, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2024, 32: 923-933. https://doi.org/10.1109/TNSRE.2024.3368434.
Effective DBS treatment improves neural information transmission of patients with disorders of consciousness: an fNIRS study, Physiological Measurement, 2023. https://doi.org/10.1088/1361-6579/ad14ab.
fNIRS-based functional connectivity signifies recovery in patients with disorders of consciousness after DBS treatment, Clinical Neurophysiology, 2023, 147: 60-68. https://doi.org/10.1016/j.clinph.2022.12.011.
A non-contact system for intraoperative quantitative assessment of bradykinesia in deep brain stimulation surgery, Computer Methods and Programs in Biomedicine, 2022, 225: 107005. https://doi.org/10.1016/j.cmpb.2022.107005.
帕金森病脑深部电刺激术中运动迟缓量化测评初探, 中华神经外科杂志, 2022, 38(11): 1114-1119.
Quantified assessment of deep brain stimulation on Parkinson's patients with task fNIRS measurements and functional connectivity analysis: a pilot study, Chinese Neurosurgical Journal, 2021, 7(1): 34. https://doi.org/10.1186/s41016-021-00251-3.
Modeling and Adaptive Control for Tendon Sheath Artificial Muscle Actuated Bending-Tip Systems With Unknown Parameters and Input Hysteresis: An Experimental Research, IEEE Transactions on Industrial Electronics, 2023, 70(10): 10588-10597. https://doi.org/10.1109/TIE.2022.3219105.
Barrier Function-Based Adaptive Control of Twisted Tendon-Sheath Actuated System With Unknown Rigid–Flexible Coupling for Robotic Ureteroscopy, IEEE/ASME Transactions on Mechatronics, 2023: 1-11. https://doi.org/10.1109/TMECH.2023.332805
Modeling and Robust Control for Tendon–Sheath Artificial Muscle System Twist With Time-Varying Parameters and Input Constraints: An Exploratory Research, IEEE Transactions on Industrial Electronics, 2023, 70(1): 878-887. https://doi.org/10.1109/TIE.2021.3134084.
Robust Admittance Control for Human Arm Strength Augmentation With Guaranteed Passivity: A Complementary Design, IEEE/ASME Transactions on Mechatronics, 2022, 27(6): 5936-5947. https://doi.org/10.1109/TMECH.2022.3191469.
Active Modeling and Control of the Ring-Shaped Pneumatic Actuator: An Experimental Study, IEEE/ASME Transactions on Mechatronics, 2022, 27(5): 2918-2929. https://doi.org/10.1109/TMECH.2021.3128228.
A novel ESMF-based observer and control scheme for a type of tendon-sheath hysteresis system, Automatica, 2021, 131: 109800. https://doi.org/10.1016/j.automatica.2021.109800.
Passivity guaranteed stiffness control with multiple frequency band specifications for a cable-driven series elastic actuator, MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 117: 709-722. https://doi.org/10.1016/j.ymssp.2018.08.007.
Enhanced Autonomous Exploration and Mapping of an Unknown Environment with the Fusion of Dual RGB-D Sensors, ENGINEERING, 2019, 5(1): 164-172. https://doi.org/10.1016/j.eng.2018.11.014.
有限频域约束下串联弹性驱动器的刚度控制, 控制理论与应用, 2019, 36(5): 711-719.
Impedance control of a cable-driven SEA with mixed H-2/H-infinity synthesis, ASSEMBLY AUTOMATION, 2017, 37(3): 296-303. https://doi.org/10.1108/AA-11-2016-150.
Augmented virtual stiffness rendering of a cable-driven SEA for human-robot interaction, IEEE/CAA Journal of Automatica Sinica, 2017, 4(4): 714-723. https://doi.org/10.1109/JAS.2017.7510637.
A Virtual Channel Based Data Augmentation Method for Electrical Impedance Tomography, IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-11. https://doi.org/10.1109/TIM.2022.3212757.
帕金森病康复机器人研究综述与展望, 机器人, 2022, 44(3): 368-384. https://doi.org/10.13973/j.cnki.robot.210263.
一种脑肢融合的神经康复训练在线评价与调整方法, 自动化学报, 2022, 48(5): 1209-1219. https://doi.org/10.16383/j.aas.c200452.
基于表面肌电信号的智能康复技术, 人工智能, 2022(3): 34-43. https://doi.org/10.16453/j.cnki.ISSN2096-5036.2022.03.003.
一种基于生成对抗网络的无监督域自适应磁共振图像分割方法, 生物医学工程学杂志, 2022, 39(6): 1181-1188.
基于深度学习的膝关节MR图像自动分割方法, 仪器仪表学报, 2020, 41(6): 140-149. https://doi.org/10.19650/j.cnki.cjsi.J2006199.
基于共享控制的人机灵巧力触觉交互系统设计与实现, 仪器仪表学报, 2017, 38(3): 602-611. https://doi.org/10.19650/j.cnki.cjsi.2017.03.012.
Fusion of Haptic and Gesture Sensors for Rehabilitation of Bimanual Coordination and Dexterous Manipulation, SENSORS, 2016, 16(3). https://doi.org/10.3390/s16030395.
一种面向步态和平衡康复训练的单绳悬吊主动减重系统设计与控制方法研究, 自动化学报, 2016, 42(12): 1819-1831. https://doi.org/10.16383/j.aas.2016.c160215.